jueves, 6 de diciembre de 2012

Análisis Matemático de Señales: Análisis de Fourier

El análisis de Fourier es elemental para entender el comportamiento de las señales de sistemas. Este es el resultado de que los senosoidales son eigenfunciones de sistemas lineales variantes en el tiempo (LTI). Si pasamos cualquier senosoidal a través de un sistema LTI, obtenemos la versión escalada de cualquier sistema senosoidal como salida.

El análisis de Fourier nos permite redefinir las señales en términos de senosoidales, todo lo que tenemos que hacer es determinar el efecto que cualquier sistema tiene en todos los senosoidales posibles (su función de transferencia) así tendremos un entendimiento completo del sistema. Así mismo, ya que podemos definir el paso de los senosoidales en el sistema como la multiplicación de ese senosoidal por la función de transferencia en la misma frecuencia, puedes convertir el paso de la señal a través de cualquier sistema de ser una convolución (en tiempo) a una multiplicación (en frecuencia) estas ideas son lo que dan el poder al análisis de Fourier.

 Ahora, después de haberle vendido el valor que tiene este método de análisis, nosotros debemos analizar exactamente lo que significa el análisis Fourier. Las cuatro transformadas de Fourier que forman parte de este análisis son: Series Fourier, Transformada de Fourier continua en el tiempo, Transformada de Fourier en Tiempo Discreto, y La Transformada de Fourier Discreta. Para este modulo, nosotros veremos la trasformada de Laplace y la transformada Z. Como extensiones de CTFT y DTFT respectivamente. Todas estas transformadas actúan esencialmente de la misma manera, al convertir una señal en tiempo en su señal equivalente en frecuencia (senosoidales). Sin embargo, dependiendo en la naturaleza de una señal especifica (por ejemplo, si es de tamaño finito o infinito, o si son discretas o continuas en el tiempo) hay una transformada apropiada para convertir las señales en su dominio de frecuencia. La siguiente tabla muestra las cuatro transformadas de Fourier y el uso de cada una. También incluye la convolución relevante para el espacio especificado.
 

viernes, 23 de noviembre de 2012

Mensajes: Store and Forward y Celdas: ATM

http://upload.wikimedia.org/wikipedia/commons/5/56/Store_and_forward-v1.gifStore and Forward o almacenamiento y retransmisión es una técnica empeada en telecomunicaciones en la que la información se envía a una estación intermedia, donde se mantiene y se envía en un momento posterior a su destino final o a otra estación intermedia. La estación intermedia, o nodo en una red contexto, verifica la integridad del mensaje antes de enviarlo. En general, esta técnica se utiliza en redes con conectividad intermitente, especialmente en el desierto o entornos que requieren una alta movilidad.  También puede ser preferible en situaciones en las que hay largos retrasos en la transmisión y las tasas de error variable y alta, o si una directa, de extremo a extremo de conexión no está disponible.

Esta técnica se origina en las redes tolerantes al retraso. No hay servicios en tiempo real
que estén disponibles para estos tipos de redes.



Celdas: ATM
 
El Modo de Transferencia Asíncrono (ATM - Asynchronous Transfer Mode) proporciona un método de transporte flexible que puede adaptarse a la voz, al vídeo y a los datos. Al igual que X.25 y frame relay, ATM dispone de un mecanismo para conmutar unidades de datos a través de las redes. A diferencia de estos protocolos de conmutación de paquetes, que transmiten unidades de datos de tamaño variable, ATM opera con una unidad de datos de tamaño fijo denominada celda. Al estandarizar el tamaño de la unidad de datos, la eficiencia de los conmutadores aumenta significativamente. ATM es el protocolo de transmisión de la RDSI-B (Red Digital de Servicios Integrados de Banda Ancha) o B-ISDN. Es capaz de alcanzar velocidades de 155 Mbps, e incluso de 600 Mbps.
ATM fue propuesto por el CCITT en 1988 como base junto con la Red Óptica Síncrona SONET (Synchronous Optical Network) de la red B-ISDN (Broadband Integrated Services Digital Network). La tecnología ATM fue propuesta debido a la flexibilidad que aporta para la transmisión de información multimedia.
Las redes de tecnología ATM proporcionan tanto un transporte con Tasa de Bit Constante (p.ej. para voz), como un transporte con Tasa de Bit Variable (p.ej. para datos), utilizando de una forma eficiente el Ancho de Banda de la red.
ATM se basa en la Conmutación Rápida de Paquetes o Fast Packed Switching (FPS).



Paquetes: X.25, Frame Relay



Paquete X.25 
Es un estándar ITU-T para redes de área amplia de conmutación de paquetes. Su protocolo de enlace, LAPB, está basado en el protocolo HDLC (publicado por ISO, y el cual a su vez es una evolución del protocolo SDLC de IBM). Establece mecanismos de direccionamiento entre usuarios, negociación de características de comunicación, técnicas de recuperación de errores. Los servicios públicos de conmutación de paquetes admiten numerosos tipos de estaciones de distintos fabricantes. Por lo tanto, es de la mayor importancia definir la interfaz entre el equipo del usuario final y la red. 

 
Frame Relay o (Frame-mode Bearer Service
Es una técnica de comunicación mediante retransmisión de tramas para redes de circuito virtual, introducida por la ITU-T a partir de la recomendación I.122 de 1988. Consiste en una forma simplificada de tecnología de conmutación de paquetes que transmite una variedad de tamaños de tramas o marcos (“frames”) para datos, perfecto para la transmisión de grandes cantidades de datos.
La técnica Frame Relay se utiliza para un servicio de transmisión de voz y datos a alta velocidad que permite la interconexión de redes de área local separadas geográficamente a un coste menor.